feat: 优化
This commit is contained in:
parent
af9f064eaf
commit
1d7dd1f03b
|
@ -1,123 +0,0 @@
|
|||
"""
|
||||
BaseRAG 本地API接口使用示例
|
||||
|
||||
这个示例展示了如何配置BaseRAG使用本地部署的嵌入API接口,
|
||||
以及当API不可用时如何自动回退到本地模型。
|
||||
"""
|
||||
|
||||
import sys
|
||||
import os
|
||||
|
||||
sys.path.insert(0, os.path.join(os.path.dirname(__file__), "..", "src"))
|
||||
|
||||
from base_rag import BaseRAG
|
||||
|
||||
|
||||
class LocalAPIRAG(BaseRAG):
|
||||
def ingest(self, documents):
|
||||
"""批量添加文档"""
|
||||
if documents:
|
||||
self.vector_store.add_texts(documents)
|
||||
print(f"已向向量库添加 {len(documents)} 个文档")
|
||||
|
||||
def query(self, question, k=3):
|
||||
"""查询文档"""
|
||||
return self.similarity_search_with_rerank(question, k=k)
|
||||
|
||||
|
||||
def demo_local_api():
|
||||
"""演示本地API配置"""
|
||||
print("=== 本地API接口配置示例 ===\n")
|
||||
|
||||
# 本地API配置(假设有本地嵌入服务)
|
||||
api_embedding_config = {
|
||||
"type": "api",
|
||||
"api_url": "http://localhost:8080", # 假设的本地API地址
|
||||
"model": "text-embedding-model",
|
||||
"api_key": "optional-key" # 可选
|
||||
}
|
||||
|
||||
print("正在尝试连接本地API...")
|
||||
try:
|
||||
rag_api = LocalAPIRAG(
|
||||
vector_store_name="api_test",
|
||||
embedding_config=api_embedding_config,
|
||||
rerank_config={"enabled": True, "method": "similarity", "top_k": 3}
|
||||
)
|
||||
print("本地API连接成功!")
|
||||
except Exception as e:
|
||||
print(f"本地API连接失败: {e}")
|
||||
print("系统会自动回退到本地模型")
|
||||
|
||||
|
||||
def demo_local_model():
|
||||
"""演示本地模型配置"""
|
||||
print("\n=== 本地模型配置示例 ===\n")
|
||||
|
||||
# 本地模型配置
|
||||
local_embedding_config = {
|
||||
"type": "local",
|
||||
"model_name": "sentence-transformers/all-MiniLM-L6-v2"
|
||||
}
|
||||
|
||||
rag_local = LocalAPIRAG(
|
||||
vector_store_name="local_test",
|
||||
embedding_config=local_embedding_config,
|
||||
rerank_config={"enabled": True, "method": "similarity", "top_k": 3}
|
||||
)
|
||||
|
||||
# 测试文档
|
||||
test_documents = [
|
||||
"Python是一种高级编程语言,语法简洁明了。",
|
||||
"机器学习是人工智能的一个重要分支。",
|
||||
"深度学习使用神经网络来模拟人脑的学习过程。",
|
||||
"自然语言处理帮助计算机理解和生成人类语言。"
|
||||
]
|
||||
|
||||
print("正在添加测试文档...")
|
||||
rag_local.ingest(test_documents)
|
||||
|
||||
# 测试查询
|
||||
query = "什么是机器学习?"
|
||||
print(f"\n查询: {query}")
|
||||
|
||||
results = rag_local.query(query, k=2)
|
||||
print("查询结果:")
|
||||
for i, doc in enumerate(results, 1):
|
||||
print(f" {i}. {doc.page_content}")
|
||||
|
||||
|
||||
def demo_local_path():
|
||||
"""演示使用本地模型路径的配置"""
|
||||
print("\n=== 本地模型路径配置示例 ===\n")
|
||||
|
||||
# 假设你有本地下载的模型
|
||||
local_path_config = {
|
||||
"type": "local",
|
||||
"model_path": "/path/to/your/local/model", # 替换为实际路径
|
||||
"model_kwargs": {"device": "cpu"}
|
||||
}
|
||||
|
||||
print("本地模型路径配置:")
|
||||
print(f" 路径: {local_path_config['model_path']}")
|
||||
print(" 注意: 请确保路径存在且包含有效的sentence-transformers模型")
|
||||
|
||||
|
||||
def main():
|
||||
"""主函数"""
|
||||
print("BaseRAG 本地API和模型配置示例\n")
|
||||
|
||||
# 演示不同的配置方式
|
||||
demo_local_api()
|
||||
demo_local_model()
|
||||
demo_local_path()
|
||||
|
||||
print("\n=== 配置建议 ===")
|
||||
print("1. 开发测试: 使用本地模型,快速启动")
|
||||
print("2. 生产环境: 使用本地API接口,便于扩展和管理")
|
||||
print("3. 离线部署: 使用本地模型路径,无需网络连接")
|
||||
print("4. 混合部署: API主用,本地模型备用")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
|
@ -23,22 +23,15 @@ class SimpleRAG(BaseRAG):
|
|||
|
||||
|
||||
def main():
|
||||
# 嵌入模型配置
|
||||
embedding_config = {
|
||||
"type": "local",
|
||||
"model_name": "sentence-transformers/all-MiniLM-L6-v2",
|
||||
}
|
||||
|
||||
# 重排配置 - 使用基于余弦相似度的重排
|
||||
rerank_config = {
|
||||
"enabled": True,
|
||||
"method": "similarity", # 使用相似度重排(无需额外依赖)
|
||||
"top_k": 3
|
||||
"type": "local",
|
||||
"model": "BAAI/bge-reranker-base",
|
||||
"top_k": 3,
|
||||
}
|
||||
|
||||
rag = SimpleRAG(
|
||||
rerank_config=rerank_config
|
||||
)
|
||||
rag = SimpleRAG(rerank_config=rerank_config)
|
||||
print("RAG系统(含重排功能)初始化完成!")
|
||||
|
||||
# 添加更多测试文档
|
||||
|
@ -50,7 +43,7 @@ def main():
|
|||
"苹果派是一种传统的美式甜点,由苹果馅和酥脆的派皮制成。",
|
||||
"苹果醋是由苹果发酵制成的,具有一定的保健功效,可以帮助消化。",
|
||||
"iPhone是苹果公司生产的智能手机,具有先进的技术和优秀的用户体验。",
|
||||
"机器学习是人工智能的一个分支,Python是机器学习领域最流行的编程语言之一。"
|
||||
"机器学习是人工智能的一个分支,Python是机器学习领域最流行的编程语言之一。",
|
||||
]
|
||||
print("正在添加文档...")
|
||||
rag.ingest(documents)
|
||||
|
|
|
@ -1,135 +0,0 @@
|
|||
import sys
|
||||
import os
|
||||
|
||||
sys.path.insert(0, os.path.join(os.path.dirname(__file__), "..", "src"))
|
||||
|
||||
from base_rag import BaseRAG
|
||||
|
||||
|
||||
class RerankRAG(BaseRAG):
|
||||
def __init__(self, **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
self.document_count = 0
|
||||
|
||||
def ingest(self, documents):
|
||||
"""批量添加文档,避免重复"""
|
||||
if documents:
|
||||
# 清空现有集合并重新添加所有文档
|
||||
self.vector_store.delete_collection()
|
||||
# 重新初始化向量库
|
||||
from langchain_chroma import Chroma
|
||||
self.vector_store = Chroma(
|
||||
collection_name=self.vector_store_name,
|
||||
embedding_function=self.embedding_model,
|
||||
persist_directory=self.persist_directory,
|
||||
)
|
||||
# 添加所有文档
|
||||
self.vector_store.add_texts(documents)
|
||||
self.document_count = len(documents)
|
||||
print(f"已添加 {self.document_count} 个文档到向量库")
|
||||
|
||||
def query_with_scores(self, question, k=5):
|
||||
"""带分数的查询,用于比较重排效果"""
|
||||
# 不使用重排的结果
|
||||
docs_no_rerank = self.similarity_search(question, k=k)
|
||||
|
||||
# 使用重排的结果
|
||||
docs_with_rerank = self.similarity_search_with_rerank(question, k=k)
|
||||
|
||||
return docs_no_rerank, docs_with_rerank
|
||||
|
||||
def query(self, question, k=3):
|
||||
return self.similarity_search_with_rerank(question, k=k)
|
||||
|
||||
|
||||
def main():
|
||||
# 嵌入模型配置
|
||||
embedding_config = {
|
||||
"type": "local",
|
||||
"model_name": "sentence-transformers/all-MiniLM-L6-v2",
|
||||
}
|
||||
|
||||
# 重排配置
|
||||
rerank_config = {"enabled": True, "method": "cross_encoder", "top_k": 3}
|
||||
|
||||
# 初始化RAG系统
|
||||
rag = RerankRAG(
|
||||
vector_store_name="rerank_test",
|
||||
embedding_config=embedding_config,
|
||||
rerank_config=rerank_config,
|
||||
retriever_top_k=5 # 获取更多候选文档
|
||||
)
|
||||
print("RAG系统(含重排功能)初始化完成!\n")
|
||||
|
||||
# 测试文档 - 关于不同主题的文档
|
||||
documents = [
|
||||
# 水果相关
|
||||
"苹果是一种非常有营养的水果,富含维生素C、纤维和抗氧化剂,对心脏健康有益。",
|
||||
"橙子含有丰富的维生素C,是柑橘类水果的代表,有助于增强免疫系统。",
|
||||
"香蕉富含钾元素,能够帮助维持血压稳定,是运动员的理想能量补充。",
|
||||
|
||||
# 科技公司相关
|
||||
"苹果公司(Apple Inc.)是全球知名的科技公司,主要产品包括iPhone、iPad、Mac电脑等。",
|
||||
"谷歌公司专注于搜索引擎和云计算服务,Android操作系统是其重要产品。",
|
||||
"微软公司开发Windows操作系统和Office办公软件,在企业软件领域占据重要地位。",
|
||||
|
||||
# 编程语言相关
|
||||
"Python是一种高级编程语言,语法简洁,广泛用于数据科学、机器学习和Web开发。",
|
||||
"Java是面向对象的编程语言,具有跨平台特性,在企业级开发中应用广泛。",
|
||||
"JavaScript是Web开发的核心语言,可以实现网页的交互功能和动态效果。",
|
||||
|
||||
# 健康相关
|
||||
"规律运动有助于维持身体健康,建议每周至少进行150分钟的中等强度有氧运动。",
|
||||
"均衡饮食是健康的基础,应该多吃蔬菜水果,减少加工食品的摄入。",
|
||||
"充足的睡眠对身心健康至关重要,成年人每天应保证7-9小时的睡眠时间。"
|
||||
]
|
||||
|
||||
print("正在添加测试文档...")
|
||||
rag.ingest(documents)
|
||||
print(f"文档添加完成!\n")
|
||||
|
||||
# 测试查询
|
||||
test_queries = [
|
||||
{
|
||||
"query": "苹果对健康有什么好处?",
|
||||
"expected_topic": "应该更偏向水果营养相关的文档"
|
||||
},
|
||||
{
|
||||
"query": "苹果公司的主要业务是什么?",
|
||||
"expected_topic": "应该更偏向科技公司相关的文档"
|
||||
},
|
||||
{
|
||||
"query": "如何保持身体健康?",
|
||||
"expected_topic": "应该更偏向健康建议相关的文档"
|
||||
}
|
||||
]
|
||||
|
||||
for i, test_case in enumerate(test_queries, 1):
|
||||
query = test_case["query"]
|
||||
expected = test_case["expected_topic"]
|
||||
|
||||
print(f"=== 测试查询 {i}: {query} ===")
|
||||
print(f"期望结果: {expected}\n")
|
||||
|
||||
# 获取两种搜索结果
|
||||
docs_no_rerank, docs_with_rerank = rag.query_with_scores(query, k=5)
|
||||
|
||||
print("📍 不使用重排的结果:")
|
||||
for j, doc in enumerate(docs_no_rerank[:3], 1):
|
||||
print(f" {j}. {doc.page_content}")
|
||||
|
||||
print("\n🎯 使用重排的结果:")
|
||||
for j, doc in enumerate(docs_with_rerank[:3], 1):
|
||||
print(f" {j}. {doc.page_content}")
|
||||
|
||||
print("\n" + "="*80 + "\n")
|
||||
|
||||
print("重排功能测试完成!")
|
||||
print("\n说明:")
|
||||
print("- 重排功能通过计算查询与文档的余弦相似度来重新排序检索结果")
|
||||
print("- 理论上重排后的结果应该更符合查询意图")
|
||||
print("- 如果结果相同,可能是因为初始检索结果已经很好,或需要更多样化的测试数据")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
|
@ -1,5 +1,5 @@
|
|||
from abc import ABC, abstractmethod
|
||||
from typing import List, Optional, Dict, ClassVar, Union, Tuple
|
||||
from typing import List, Optional, Dict, ClassVar, Union, Tuple, Any
|
||||
import threading
|
||||
import numpy as np
|
||||
|
||||
|
@ -13,12 +13,166 @@ from langchain.llms.base import BaseLLM
|
|||
from langchain.schema import Document
|
||||
|
||||
|
||||
class BaseRAG(ABC):
|
||||
class ModelManager:
|
||||
"""统一的模型管理类,用于创建和缓存embedding和rerank模型"""
|
||||
|
||||
# 类级别的模型缓存
|
||||
_embedding_models: ClassVar[Dict[str, Embeddings]] = {}
|
||||
_models: ClassVar[Dict[str, Any]] = {}
|
||||
# 线程锁,保护模型缓存的并发访问
|
||||
_lock: ClassVar[threading.Lock] = threading.Lock()
|
||||
|
||||
@classmethod
|
||||
def get_config_key(cls, config: Dict, model_type: str = "embedding") -> str:
|
||||
"""根据配置生成唯一的缓存键"""
|
||||
config_type = config.get("type", "local")
|
||||
prefix = f"{model_type}_{config_type}"
|
||||
|
||||
if config_type == "local":
|
||||
# 支持本地路径和模型名称两种方式
|
||||
if "model_path" in config:
|
||||
path_key = config["model_path"].replace("/", "_").replace("\\", "_")
|
||||
return f"{prefix}_path_{path_key}"
|
||||
else:
|
||||
model_key = config.get("model_name", config.get("model", "default"))
|
||||
return f"{prefix}_name_{model_key}"
|
||||
elif config_type == "api":
|
||||
api_key = (
|
||||
config.get("api_url", "default").replace("/", "_").replace(":", "_")
|
||||
)
|
||||
return f"{prefix}_api_{api_key}"
|
||||
else:
|
||||
model_key = config.get("model", "default")
|
||||
return f"{prefix}_{model_key}"
|
||||
|
||||
@classmethod
|
||||
def get_or_create_model(cls, config: Dict, model_type: str, creator_func) -> Any:
|
||||
"""获取或创建模型(带缓存,线程安全)"""
|
||||
config_key = cls.get_config_key(config, model_type)
|
||||
|
||||
# 双重检查锁定模式
|
||||
if config_key in cls._models:
|
||||
print(f"使用缓存的{model_type}模型: {config_key}")
|
||||
return cls._models[config_key]
|
||||
|
||||
with cls._lock:
|
||||
# 再次检查,防止并发创建
|
||||
if config_key not in cls._models:
|
||||
print(f"正在创建{model_type}模型: {config_key}")
|
||||
cls._models[config_key] = creator_func(config)
|
||||
else:
|
||||
print(f"使用缓存的{model_type}模型: {config_key}")
|
||||
|
||||
return cls._models[config_key]
|
||||
|
||||
@staticmethod
|
||||
def create_embedding_model(config: Dict) -> Embeddings:
|
||||
"""创建嵌入模型"""
|
||||
config_type = config.get("type", "local")
|
||||
|
||||
if config_type == "local":
|
||||
# 支持本地路径和模型名称两种方式
|
||||
if "model_path" in config:
|
||||
model_path = config["model_path"]
|
||||
print(f"从本地路径加载嵌入模型: {model_path}")
|
||||
model_name = model_path
|
||||
else:
|
||||
model_name = config.get(
|
||||
"model_name",
|
||||
config.get("model", "sentence-transformers/all-MiniLM-L6-v2"),
|
||||
)
|
||||
print(f"从HuggingFace Hub加载嵌入模型: {model_name}")
|
||||
|
||||
return HuggingFaceEmbeddings(
|
||||
model_name=model_name,
|
||||
model_kwargs=config.get("model_kwargs", {"device": "cpu"}),
|
||||
encode_kwargs=config.get(
|
||||
"encode_kwargs", {"normalize_embeddings": True}
|
||||
),
|
||||
)
|
||||
|
||||
elif config_type == "api":
|
||||
try:
|
||||
from langchain_openai import OpenAIEmbeddings
|
||||
|
||||
api_url = config.get("api_url")
|
||||
if not api_url:
|
||||
raise ValueError("使用API类型时必须提供api_url")
|
||||
|
||||
print(f"连接到嵌入API: {api_url}")
|
||||
return OpenAIEmbeddings(
|
||||
model=config.get("model", "text-embedding"),
|
||||
base_url=api_url,
|
||||
api_key=config.get("api_key", "dummy"),
|
||||
max_retries=config.get("max_retries", 3),
|
||||
)
|
||||
except ImportError:
|
||||
print("警告: langchain_openai未安装,回退到本地模型")
|
||||
model_name = config.get(
|
||||
"model", "sentence-transformers/all-MiniLM-L6-v2"
|
||||
)
|
||||
print(f"回退到本地模型: {model_name}")
|
||||
return HuggingFaceEmbeddings(
|
||||
model_name=model_name,
|
||||
model_kwargs=config.get("model_kwargs", {"device": "cpu"}),
|
||||
encode_kwargs=config.get(
|
||||
"encode_kwargs", {"normalize_embeddings": True}
|
||||
),
|
||||
)
|
||||
|
||||
else:
|
||||
raise ValueError(
|
||||
f"不支持的嵌入模型类型: {config_type},支持的类型: 'local', 'api'"
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def create_rerank_model(config: Dict) -> Any:
|
||||
"""创建重排模型"""
|
||||
config_type = config.get("type", "local")
|
||||
|
||||
if config_type == "local":
|
||||
try:
|
||||
from sentence_transformers import CrossEncoder
|
||||
|
||||
# 支持本地路径和模型名称两种方式
|
||||
if "model_path" in config:
|
||||
model_path = config["model_path"]
|
||||
print(f"从本地路径加载重排模型: {model_path}")
|
||||
return CrossEncoder(model_path)
|
||||
else:
|
||||
model_name = config.get("model", "BAAI/bge-reranker-base")
|
||||
print(f"从HuggingFace Hub加载BGE重排模型: {model_name}")
|
||||
return CrossEncoder(model_name)
|
||||
|
||||
except ImportError:
|
||||
print("警告: sentence-transformers未安装,无法使用本地重排模型")
|
||||
return None
|
||||
except Exception as e:
|
||||
print(f"本地重排模型加载失败: {e}")
|
||||
return None
|
||||
|
||||
elif config_type == "api":
|
||||
try:
|
||||
api_url = config.get("api_url")
|
||||
if not api_url:
|
||||
raise ValueError("使用API类型时必须提供api_url")
|
||||
|
||||
print(f"连接到重排API: {api_url}")
|
||||
return {
|
||||
"type": "api",
|
||||
"api_url": api_url,
|
||||
"model": config.get("model", "reranker"),
|
||||
"api_key": config.get("api_key", "dummy"),
|
||||
"max_retries": config.get("max_retries", 3),
|
||||
}
|
||||
except Exception as e:
|
||||
print(f"API重排模型初始化失败: {e}")
|
||||
return None
|
||||
|
||||
else:
|
||||
raise ValueError(f"不支持的重排模型类型: {config_type},支持的类型: 'local', 'api'")
|
||||
|
||||
|
||||
class BaseRAG(ABC):
|
||||
def __init__(
|
||||
self,
|
||||
vector_store_name: str = "default",
|
||||
|
@ -43,9 +197,9 @@ class BaseRAG(ABC):
|
|||
本地部署接口: {"type": "api", "api_url": "http://localhost:8000/embeddings", "model": "your-model"}
|
||||
|
||||
rerank_config 示例:
|
||||
{"enabled": True, "method": "cross_encoder", "model": "cross-encoder/ms-marco-MiniLM-L-6-v2", "top_k": 3}
|
||||
{"enabled": True, "method": "bge", "model": "BAAI/bge-reranker-base", "top_k": 3}
|
||||
{"enabled": True, "method": "similarity", "top_k": 3}
|
||||
{"enabled": True, "type": "local", "model": "BAAI/bge-reranker-base", "top_k": 3}
|
||||
{"enabled": True, "type": "local", "model_path": "/path/to/your/rerank/model", "top_k": 3}
|
||||
{"enabled": True, "type": "api", "api_url": "http://localhost:8000/rerank", "model": "reranker-model", "api_key": "your-key", "top_k": 3}
|
||||
"""
|
||||
self.vector_store_name = vector_store_name
|
||||
self.embedding_config = embedding_config or {
|
||||
|
@ -57,16 +211,17 @@ class BaseRAG(ABC):
|
|||
self.persist_directory = persist_directory
|
||||
self.rerank_config = rerank_config or {"enabled": False}
|
||||
|
||||
# 使用缓存的嵌入模型
|
||||
config_key = self._get_config_key(self.embedding_config)
|
||||
self.embedding_model = self._get_or_create_embedding_model(
|
||||
config_key, self.embedding_config
|
||||
# 使用统一的模型管理器创建嵌入模型
|
||||
self.embedding_model = ModelManager.get_or_create_model(
|
||||
self.embedding_config, "embedding", ModelManager.create_embedding_model
|
||||
)
|
||||
|
||||
# 初始化重排模型
|
||||
self.reranker = None
|
||||
if self.rerank_config.get("enabled", False):
|
||||
self.reranker = self._init_reranker()
|
||||
self.reranker = ModelManager.get_or_create_model(
|
||||
self.rerank_config, "rerank", ModelManager.create_rerank_model
|
||||
)
|
||||
|
||||
# 初始化 Chroma 向量库
|
||||
self.vector_store = Chroma(
|
||||
|
@ -75,151 +230,6 @@ class BaseRAG(ABC):
|
|||
persist_directory=persist_directory,
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def _get_config_key(config: Dict) -> str:
|
||||
"""
|
||||
根据配置生成唯一的缓存键
|
||||
"""
|
||||
config_type = config.get("type", "local")
|
||||
if config_type == "local":
|
||||
# 支持本地路径和模型名称两种方式
|
||||
if "model_path" in config:
|
||||
return f"local_path_{config['model_path'].replace('/', '_').replace('\\', '_')}"
|
||||
else:
|
||||
return f"local_name_{config.get('model_name', 'default')}"
|
||||
elif config_type == "api":
|
||||
return f"api_{config.get('api_url', 'default').replace('/', '_').replace(':', '_')}"
|
||||
else:
|
||||
return f"{config_type}_{config.get('model', 'default')}"
|
||||
|
||||
@classmethod
|
||||
def _get_or_create_embedding_model(
|
||||
cls, config_key: str, config: Dict
|
||||
) -> Embeddings:
|
||||
"""
|
||||
获取或创建嵌入模型(带缓存,线程安全)
|
||||
"""
|
||||
# 双重检查锁定模式,先检查是否已存在(避免不必要的锁开销)
|
||||
if config_key in cls._embedding_models:
|
||||
print(f"使用缓存的嵌入模型: {config_key}")
|
||||
return cls._embedding_models[config_key]
|
||||
|
||||
# 获取锁,进行安全的创建操作
|
||||
with cls._lock:
|
||||
# 再次检查,防止在等待锁期间其他线程已经创建了模型
|
||||
if config_key not in cls._embedding_models:
|
||||
print(f"正在创建嵌入模型: {config_key}")
|
||||
cls._embedding_models[config_key] = cls._create_embedding_model(config)
|
||||
else:
|
||||
print(f"使用缓存的嵌入模型: {config_key}")
|
||||
|
||||
return cls._embedding_models[config_key]
|
||||
|
||||
@staticmethod
|
||||
def _create_embedding_model(config: Dict) -> Embeddings:
|
||||
"""
|
||||
根据配置创建嵌入模型
|
||||
"""
|
||||
config_type = config.get("type", "local")
|
||||
|
||||
if config_type == "local":
|
||||
# 支持本地路径和模型名称两种方式
|
||||
if "model_path" in config:
|
||||
model_path = config["model_path"]
|
||||
print(f"从本地路径加载模型: {model_path}")
|
||||
return HuggingFaceEmbeddings(
|
||||
model_name=model_path,
|
||||
model_kwargs=config.get("model_kwargs", {"device": "cpu"}),
|
||||
encode_kwargs=config.get(
|
||||
"encode_kwargs", {"normalize_embeddings": True}
|
||||
),
|
||||
)
|
||||
else:
|
||||
model_name = config.get(
|
||||
"model_name", "sentence-transformers/all-MiniLM-L6-v2"
|
||||
)
|
||||
print(f"从HuggingFace Hub加载模型: {model_name}")
|
||||
return HuggingFaceEmbeddings(
|
||||
model_name=model_name,
|
||||
model_kwargs=config.get("model_kwargs", {"device": "cpu"}),
|
||||
encode_kwargs=config.get(
|
||||
"encode_kwargs", {"normalize_embeddings": True}
|
||||
),
|
||||
)
|
||||
|
||||
elif config_type == "api":
|
||||
# 本地部署的嵌入API接口
|
||||
try:
|
||||
from langchain_openai import OpenAIEmbeddings
|
||||
|
||||
api_url = config.get("api_url")
|
||||
if not api_url:
|
||||
raise ValueError("使用API类型时必须提供api_url")
|
||||
|
||||
print(f"连接到本地嵌入API: {api_url}")
|
||||
return OpenAIEmbeddings(
|
||||
model=config.get("model", "text-embedding"),
|
||||
base_url=api_url,
|
||||
api_key=config.get("api_key", "dummy"), # 本地API可能不需要密钥
|
||||
max_retries=config.get("max_retries", 3),
|
||||
)
|
||||
except ImportError:
|
||||
print("警告: langchain_openai未安装,无法使用API接口")
|
||||
# 回退到本地模型
|
||||
model_name = config.get(
|
||||
"model", "sentence-transformers/all-MiniLM-L6-v2"
|
||||
)
|
||||
print(f"回退到本地模型: {model_name}")
|
||||
return HuggingFaceEmbeddings(
|
||||
model_name=model_name,
|
||||
model_kwargs=config.get("model_kwargs", {"device": "cpu"}),
|
||||
encode_kwargs=config.get(
|
||||
"encode_kwargs", {"normalize_embeddings": True}
|
||||
),
|
||||
)
|
||||
|
||||
else:
|
||||
raise ValueError(
|
||||
f"不支持的嵌入模型类型: {config_type},支持的类型: 'local', 'api'"
|
||||
)
|
||||
|
||||
def _init_reranker(self):
|
||||
"""初始化重排模型"""
|
||||
method = self.rerank_config.get("method", "cross_encoder")
|
||||
|
||||
# 相似度重排不需要额外的模型
|
||||
if method == "similarity":
|
||||
print("使用基于余弦相似度的重排方法")
|
||||
return "similarity" # 返回标识符
|
||||
|
||||
if method == "cross_encoder":
|
||||
try:
|
||||
from sentence_transformers import CrossEncoder
|
||||
|
||||
model_name = self.rerank_config.get(
|
||||
"model", "cross-encoder/ms-marco-MiniLM-L-6-v2"
|
||||
)
|
||||
print(f"正在加载CrossEncoder重排模型: {model_name}")
|
||||
return CrossEncoder(model_name)
|
||||
except ImportError:
|
||||
print("警告: sentence-transformers未安装,无法使用CrossEncoder重排")
|
||||
return None
|
||||
|
||||
elif method == "bge":
|
||||
try:
|
||||
from FlagEmbedding import FlagReranker
|
||||
|
||||
model_name = self.rerank_config.get("model", "BAAI/bge-reranker-base")
|
||||
print(f"正在加载BGE重排模型: {model_name}")
|
||||
return FlagReranker(model_name, use_fp16=True)
|
||||
except ImportError:
|
||||
print("警告: FlagEmbedding未安装,无法使用BGE重排")
|
||||
return None
|
||||
|
||||
else:
|
||||
print(f"警告: 不支持的重排方法: {method},将使用相似度重排")
|
||||
return "similarity"
|
||||
|
||||
def _rerank_documents(
|
||||
self, query: str, documents: List[Document]
|
||||
) -> List[Document]:
|
||||
|
@ -227,36 +237,22 @@ class BaseRAG(ABC):
|
|||
if not documents:
|
||||
return documents
|
||||
|
||||
method = self.rerank_config.get("method", "cross_encoder")
|
||||
top_k = self.rerank_config.get("top_k", len(documents))
|
||||
|
||||
# 如果是相似度重排,直接调用相似度重排方法
|
||||
if method == "similarity":
|
||||
return self._similarity_rerank(query, documents)
|
||||
|
||||
# 其他方法需要reranker模型
|
||||
if not self.reranker or self.reranker == "similarity":
|
||||
print(f"重排模型未初始化,使用默认相似度重排")
|
||||
return self._similarity_rerank(query, documents)
|
||||
# 检查reranker模型是否可用
|
||||
if not self.reranker:
|
||||
print(f"重排模型未初始化,跳过重排")
|
||||
return documents[:top_k]
|
||||
|
||||
try:
|
||||
if method == "cross_encoder":
|
||||
# 准备输入对
|
||||
# 判断是否为API模式
|
||||
if isinstance(self.reranker, dict) and self.reranker.get("type") == "api":
|
||||
return self._api_rerank(query, documents, top_k)
|
||||
else:
|
||||
# 本地模型模式(CrossEncoder)
|
||||
query_doc_pairs = [(query, doc.page_content) for doc in documents]
|
||||
scores = self.reranker.predict(query_doc_pairs)
|
||||
|
||||
# 根据分数排序
|
||||
doc_scores = list(zip(documents, scores))
|
||||
doc_scores.sort(key=lambda x: x[1], reverse=True)
|
||||
|
||||
# 返回top_k个文档
|
||||
return [doc for doc, score in doc_scores[:top_k]]
|
||||
|
||||
elif method == "bge":
|
||||
# 使用BGE重排
|
||||
query_doc_pairs = [[query, doc.page_content] for doc in documents]
|
||||
scores = self.reranker.compute_score(query_doc_pairs)
|
||||
|
||||
# 处理单个文档的情况
|
||||
if not isinstance(scores, list):
|
||||
scores = [scores]
|
||||
|
@ -269,44 +265,59 @@ class BaseRAG(ABC):
|
|||
return [doc for doc, score in doc_scores[:top_k]]
|
||||
|
||||
except Exception as e:
|
||||
print(f"重排失败: {e},回退到相似度重排")
|
||||
return self._similarity_rerank(query, documents)
|
||||
print(f"重排失败: {e},跳过重排")
|
||||
return documents[:top_k]
|
||||
|
||||
return self._similarity_rerank(query, documents)
|
||||
|
||||
def _similarity_rerank(
|
||||
self, query: str, documents: List[Document]
|
||||
def _api_rerank(
|
||||
self, query: str, documents: List[Document], top_k: int
|
||||
) -> List[Document]:
|
||||
"""基于余弦相似度的简单重排(备选方案)"""
|
||||
if not documents:
|
||||
return documents
|
||||
"""使用API进行重排"""
|
||||
import requests
|
||||
import json
|
||||
|
||||
try:
|
||||
# 获取查询向量
|
||||
query_embedding = self.embedding_model.embed_query(query)
|
||||
api_config = self.reranker
|
||||
api_url = api_config["api_url"]
|
||||
|
||||
# 获取文档向量
|
||||
doc_texts = [doc.page_content for doc in documents]
|
||||
doc_embeddings = self.embedding_model.embed_documents(doc_texts)
|
||||
# 准备API请求数据
|
||||
payload = {
|
||||
"model": api_config["model"],
|
||||
"query": query,
|
||||
"documents": [doc.page_content for doc in documents],
|
||||
"top_k": top_k,
|
||||
}
|
||||
|
||||
# 计算余弦相似度
|
||||
similarities = []
|
||||
for doc_emb in doc_embeddings:
|
||||
similarity = np.dot(query_embedding, doc_emb) / (
|
||||
np.linalg.norm(query_embedding) * np.linalg.norm(doc_emb)
|
||||
)
|
||||
similarities.append(similarity)
|
||||
headers = {
|
||||
"Content-Type": "application/json",
|
||||
"Authorization": f"Bearer {api_config['api_key']}",
|
||||
}
|
||||
|
||||
# 根据相似度排序
|
||||
doc_similarities = list(zip(documents, similarities))
|
||||
doc_similarities.sort(key=lambda x: x[1], reverse=True)
|
||||
# 发送API请求
|
||||
response = requests.post(api_url, json=payload, headers=headers, timeout=30)
|
||||
|
||||
top_k = self.rerank_config.get("top_k", len(documents))
|
||||
return [doc for doc, sim in doc_similarities[:top_k]]
|
||||
if response.status_code == 200:
|
||||
result = response.json()
|
||||
|
||||
# 假设API返回格式为: {"scores": [0.9, 0.8, ...]} 或 {"results": [{"index": 0, "score": 0.9}, ...]}
|
||||
if "scores" in result:
|
||||
scores = result["scores"]
|
||||
elif "results" in result:
|
||||
scores = [item["score"] for item in result["results"]]
|
||||
else:
|
||||
raise ValueError("API返回格式不支持")
|
||||
|
||||
# 根据分数排序
|
||||
doc_scores = list(zip(documents, scores))
|
||||
doc_scores.sort(key=lambda x: x[1], reverse=True)
|
||||
|
||||
return [doc for doc, score in doc_scores[:top_k]]
|
||||
else:
|
||||
print(f"API重排请求失败: {response.status_code}, {response.text}")
|
||||
return documents[:top_k]
|
||||
|
||||
except Exception as e:
|
||||
print(f"相似度重排失败: {e}")
|
||||
return documents
|
||||
print(f"API重排失败: {e},跳过重排")
|
||||
return documents[:top_k]
|
||||
|
||||
def load_and_split_documents(self, file_path: str) -> List[Document]:
|
||||
"""
|
||||
|
|
Loading…
Reference in New Issue